A hierarchical Bayesian method to resolve an inverse problem of MEG contaminated with eye movement artifacts

نویسندگان

  • Yusuke Fujiwara
  • Okito Yamashita
  • Dai Kawawaki
  • Kenji Doya
  • Mitsuo Kawato
  • Keisuke Toyama
  • Masa-aki Sato
چکیده

The magnetic fields generated by eye movements are major artifacts in MEG measurements. We propose a hybrid hierarchical variational Bayesian method to remove eye movement artifacts from MEG data. Our method is an extension of the hierarchical variational Bayesian method for MEG source localization proposed by Sato et al. [Sato, M., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., Doya, K., and Kawato, M., (2004). Hierarchical Bayesian estimation for MEG inverse problem. NeuroImage 23(3), 806-826]. First, we assumed a single dipole at each left and right eyeball as a source of eye artifacts. Second, we constructed an EOG forward model describing the relationship between eye dipoles and electric potentials, i.e., EOG. Based on the Bayesian framework, the proposed method concurrently estimates eye and brain current sources from both MEG and EOG data. Thereby the brain current sources can be isolated from eye artifacts. The new method was tested in two ways. In the simulation experiments, the performance of eye artifact removal was evaluated from various aspects; locations of brain current sources, temporal correlation between eye and brain current sources, the level of MEG observation noise and so on. In real MEG experiments, we measured MEG and EOG data during smooth pursuit eye movements for a horizontally or circularly moving target. Our method successfully removed eye artifacts from the simulated and real MEG data with the estimation of brain current sources that were located in eye movement related areas. Our method should be widely applicable to MEG data obtained in tasks with non-negligible eye movements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of hyper-parameters for a hierarchical model of combined cortical and extra-brain current sources in the MEG inverse problem

One of the major obstacles in estimating cortical currents from MEG signals is the disturbance caused by magnetic artifacts derived from extra-cortical current sources such as heartbeats and eye movements. To remove the effect of such extra-brain sources, we improved the hybrid hierarchical variational Bayesian method (hyVBED) proposed by Fujiwara et al. (NeuroImage, 2009). hyVBED simultaneousl...

متن کامل

Hierarchical Bayesian estimation for MEG inverse problem.

Source current estimation from MEG measurement is an ill-posed problem that requires prior assumptions about brain activity and an efficient estimation algorithm. In this article, we propose a new hierarchical Bayesian method introducing a hierarchical prior that can effectively incorporate both structural and functional MRI data. In our method, the variance of the source current at each source...

متن کامل

Evaluation of hierarchical Bayesian method through retinotopic brain activities reconstruction from fMRI and MEG signals

A hierarchical Bayesian method estimated current sources from MEG data, incorporating an fMRI constraint as a hierarchical prior whose strength is controlled by hyperparameters. A previous study [Sato, M., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., Doya, K., Kawato, M., 2004. Hierarchical Bayesian estimation for MEG inverse problem. Neuroimage 23, 806-826] demonstrated that fMRI informat...

متن کامل

Hierarchical Bayesian Approaches to the Inverse Problem of EEG/MEG Current Density Reconstruction

This thesis deals with the inverse problem of EEG/MEG source reconstruction: The estimation of the activity-related ion currents by measuring the induced electromagnetic fields outside the skull is a challenging mathematical inverse problem, as the number of free parameters within the corresponding forward model is much larger than the number of measurements. Additionally, the problem is ill-co...

متن کامل

Hierarchical Bayesian estimates of distributed MEG sources: theoretical aspects and comparison of variational and MCMC methods.

Magnetoencephalography (MEG) provides millisecond-scale temporal resolution for noninvasive mapping of human brain functions, but the problem of reconstructing the underlying source currents from the extracranial data has no unique solution. Several distributed source estimation methods based on different prior assumptions have been suggested for the resolution of this inverse problem. Recently...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 45 2  شماره 

صفحات  -

تاریخ انتشار 2009